Life's Roller Coaster

If I'm missing, or not taking messages sorry – I'm more angry about letting my friends down than YOU will ever be at being let down! Unfortunately that is sometimes a side effect of Cancer! Mea Culpa: may I blame being short fused & grumpy on it too! My first symptoms presented in Nov-1998 – Follow The Trail on >DIARY of CANCER< Immediately Below!

Could CRISPR Be The Future For Curing Cancer?

Could CRISPR Be The Future For Curing Cancer?
.

 Please Be Sure To

& Link to my My Blogs
To Spread The Facts World Wide

To Give Hope & Information

 .

Why You Should Care

Because a Nobel Prize winner says this breakthough is better than his breakthrough.

Jennifer Doudna has always had an explorer’s spirit. It’s what led the UC Berkeley molecular and cell biology professor to engineer a cheaper, easier way to correct DNA defects. Her game-changing technology takes a mysterious bacterial genetic code and transforms it into a powerful tool for cutting and pasting bits of genetic material – meaning not only could the entire field of gene therapy be revived, but her genome-editing tool could one day be used to treat a range of diseases, from cancer and AIDS to hereditary disorders like Down syndrome and Huntington disease

 That willingness to wander, to maybe even get a little lost, could be how she was able to make a creative break from earlier technologies. 

Growing up in rainy Hilo, Hawaii, Doudna used curiosity as her compass. She never planned her weekend hikes, she just went. And just going she always discovered something fascinating. Sometimes she joined a family friend who was a biologist at the University of Hawaii, collecting mushrooms and examining tiny mollusks for his research. Doudna thought the finds were “so cool” that she worked in his lab the summer before college. It was her first taste of scientific research — and she never looked back.

”I wasn’t actively trying to go in any particular direction,” she said. That willingness to wander, to maybe even get a little lost, could be how she was able to make a creative break from earlier genome-editing technologies. Doudna “certainly didn’t set out to discover a genome editing tool by any stretch of the imagination.” It all began with a puzzle she couldn’t resist solving, thanks largely to her father. When Doudna was growing up, the literature professor got her hooked on one of his favorite pastimes — decoding short pieces of encrypted text, or cryptograms.

CRISPRs: Clustered regularly interspaced short palindromic repeats. Or, “weird repetitive RNA sequences tucked in the genomes” of bacteria that play an important role in immunity.

RNA: The molecule that carries out DNA instructions for creating the proteins that drive processes in the body.

In 2005, a colleague presented Doudna with a genetic cryptogram — weird repetitive RNA sequences tucked in the genomes of many of the bacteria she studied. Most scientists weren’t even aware of these so-called CRISPRs, much less their function. But Doudna suspected they hid a crucial purpose.

Sure enough, scientists discovered that CRISPRs played an important role in immunity: they recognize the DNA of viral invaders for the bacteria to chop up and fight off. But how did this search-and-destroy mechanism work? Teaming up with Umea University molecular biologist Emmanuelle Charpentier, Doudna unearthed the first clue when she found that a protein called Cas9 acts like a pair of molecular scissors. A CRISPR RNA fragment hooks up with Cas9 to precisely target the DNA of an invading virus, which it then cuts and destroys.

We knew if the system could be made to work in human cells, it would be a really profound discovery.

Here’s where it gets really complicated. Martin Jinek, a postdoctoral researcher in Doudna’s lab, found that Cas9 in bacteria needs two RNA guide strands – this sent the gears in their heads turning. What if they could engineer the system to require only a single, programmable RNA strand? Then biologists could use it to easily target and cut any DNA sequence. Doudna felt “a chill of excitement.” Maybe they could link the two RNA strands into one, and loop it in on itself — mimicking a double-stranded structure. Those chills were warranted: Doudna’s lab and other groups successfully used this simplified CRISPR system to modify genes in bacteria, plant and animal cells.

One early form of CRISPR-based gene therapy could involve editing the genes responsible for blood disorders like sickle-cell anemia in bone marrow cells, growing them into mature blood cells and injecting them back into patients.   

Little more than a year after Doudna first described CRISPR in the journal Science, the cut-and-paste technology has yielded promising results in labs around the world. Last month, researchers from the Netherland’s Utrecht institute reported in Cell Stem Cell that CRISPR corrected the gene mutation responsible for cystic fibrosis in stem cells developed from two children with the life-threatening disease. Doudna believes a clinical trial of CRISPR-based gene therapy could begin in less than a decade.

Doudna experienced “many frustrations” getting CRISPR to work in human cells. But she knew if she succeeded, CRISPR would be “a profound discovery” — and maybe even a powerful gene therapy technique.

“I hope you’re sitting down,” an excited colleague told Doudna in an unexpected phone call. “CRISPR is turning out to be absolutely spectacular in [Harvard geneticist] George Church’s hands.” He had even gotten it to work in human cells. Thrilled, Doudna immediately contacted Church. They shared their results, and both published studies in January 2013 showing that CRISPR can cut, delete and replace genes in human cells. University of Massachusetts biologist Craig Mello, who shared the 2006 Nobel Prize for another genome editing tool, hails Doudna’s CRISPR technique as a “tremendous breakthrough,” even admitting that “in many ways it’s better” than his own technique.

Other techniques can also edit genes at specific DNA regions. But they require scientists to engineer a separate protein for each target site. In contrast, CRISPR only needs the Cas9 protein, allowing it to correct multiple defects at once. Besides being cheaper and easier to use, CRISPR is also much more precise, reducing the risk of off-target modifications introducing dangerous mutations. As a result, it could help revive the gene therapy field, whose early clinical failures — including patient deaths — led some to dismiss it as overhyped.

That doesn’t mean CRISPR is perfect, though. While it’s extremely precise, it occasionally modifies DNA at similar sites elsewhere in the genome instead of the target gene. Understanding and exploiting how Cas9 avoids these close matches “is an active area of investigation,” Doudna said. Still, CRISPR is ”a real game-changer,” Mello told the Independent. “It’s incredibly powerful.”

As for Doudna, she’s still soaking it all in. “It’s been very exciting to see work that started very much as a backwater kind of project, very much basic science, come to such fruition,” she said. 

To view the original article CLICK HERE
.
Regards,
Greg_L-W.
.
 Please Be Sure To
& Link to my My Blogs
To Spread The Facts World Wide To Give Others HOPE
I Have Been Fighting Cancer since 1997 & I’M STILL HERE!
I Have Cancer, Cancer Does NOT Have Me
I just want to say sorry for copping out at times and leaving Lee and friends to cope!
Any help and support YOU can give her will be hugely welcome.
I do make a lousy patient!

.
If YOU want to follow my fight against Cancer from when it started and I first presented with symptoms in 1998 see The TAB at the Header of this Blog. called >DIARY of Cancer ….< just click and it will give you a long list of the main events in chronological order, many linked to specific blog postings.
.
Thoughts, articles and comments will be in chronological order in the main blog and can be tracked in the >ARCHIVE< in the Left Sidebar.
.
You may find the TABS >MEDICAL LINKS< and also >CANCER LINKS< of help, also many of the links in articles and >HOT LINKS< in the Sidebar.
.
YOU are welcome to call me, minded that I am NOT medically trained, if you believe I can help in ANY way. .

Posted by: Greg Lance-Watkins

tel: 01594 – 528 337
Accuracy & Copyright Statement: CLICK HERE
Summary, archive, facts & comments on UKIP: http://UKIP-vs-EUkip.com
DO MAKE USE of LINKS & >Right Side Bar< & The Top Bar >PAGES<
Also:
Details & Links: http://GregLanceWatkins.com
UKIP Its ASSOCIATES & DETAILS: CLICK HERE
Views I almost Totally Share: CLICK HERE
General Stuff archive: http://gl-w.blogspot.com
General Stuff ongoing: http://gl-w.com
Health Blog. Archive: http://GregLW.blogspot.com
Health Blog. Ongoing: http:GregLW.com

TWITTER: Greg_LW

Enhanced by Zemanta
Advertisements

Treating The Whole Person!

Treating The Whole Person!
.

 Please Be Sure To

My Blogs
To Spread The Facts World Wide
To Give Hope & Information

 .
Hi,

scientists have proudly announced their ability to store data on DNA and that within 10 years one gram of DNA would be capable of storing 7 Billion x 64GB of data – wow won’t that be usefull, then all they need is to work out how to retrieve it!

In the meantime actual steps towards a totally new approach to medicine in the most holistic form imaginable seem to be the way forward not just holistic but ‘whole-istic’!

This seems much more valuable to me than storing endless data, when it seems most data gathered confidentially is merely used by our burgeoning police state style authorities! Or put on lap tops, hard drives, CDs or the like and left in taxis or on trains!

However we could find care of our bio system internally will solve many of mankind’s illnesses and diseases!

Modern medicine

Microbes maketh man

People are not just people. They are an awful lot of microbes, too

POLITICAL revolutionaries turn the world upside down. Scientific ones more often turn it inside out. And that, almost literally, is happening to the idea of what, biologically speaking, a human being is.

The traditional view is that a human body is a collection of 10 trillion cells which are themselves the products of 23,000 genes. If the revolutionaries are correct, these numbers radically underestimate the truth. 

For in the nooks and crannies of every human being, and especially in his or her guts, dwells the microbiome: 100 trillion bacteria of several hundred species bearing 3m non-human genes. The biological Robespierres believe these should count, too; that humans are not single organisms, but superorganisms made up of lots of smaller organisms working together.
It might sound perverse to claim bacterial cells and genes as part of the body, but the revolutionary case is a good one. For the bugs are neither parasites nor passengers. They are, rather, fully paid-up members of a community of which the human “host” is but a single (if dominating) member. This view is increasingly popular: the world’s leading scientific journals, Nature and Science, have both reviewed it extensively in recent months. It is also important: it will help the science and practice of medicine (see article).

All in this together

The microbiome does many jobs in exchange for the raw materials and shelter its host provides. One is to feed people more than 10% of their daily calories. These are derived from plant carbohydrates that human enzymes are unable to break down. And not just plant carbohydrates. Mother’s milk contains carbohydrates called glycans which human enzymes cannot digest, but bacterial ones can.

This alone shows how closely host and microbiome have co-evolved over the years. But digestion is not the only nutritional service provided. The microbiome also makes vitamins, notably B2, B12 and folic acid. It is, moreover, capable of adjusting its output to its host’s needs and diet. The microbiomes of babies make more folic acid than do those of adults. And microbiomes in vitamin-hungry places like Malawi and rural Venezuela turn out more of these chemicals than do those in the guts of North Americans.

The microbiome also maintains the host’s health by keeping hostile interlopers at bay. An alien bug that causes diarrhoea, for instance, is as much an enemy of the microbiome as of the host. 

Both have an interest in zapping it. And both contribute to the task. Host and microbiome, then, are allies. But there is more to it than that. For the latest research shows their physiologies are linked in ways which make the idea of a human superorganism more than just a rhetorical flourish.

These links are most visible when they go wrong. 

A disrupted microbiome has been associated with a lengthening list of problems: obesity and its opposite, malnutrition; diabetes (both type-1 and type-2); atherosclerosis and heart disease; multiple sclerosis; asthma and eczema; liver disease; numerous diseases of the intestines, including bowel cancer; and autism. The details are often obscure, but in some cases it looks as if bugs are making molecules that help regulate the activities of human cells. If these signals go wrong, disease is the consequence. 

This matters because it suggests doctors have been looking in the wrong place for explanations of these diseases. It also suggests a whole new avenue for treatment. If an upset microbiome causes illness, settling it down might effect a cure.

Yogurt companies and health-food fanatics have been banging this drum for years. And in the case of at least one malady, irritable-bowel syndrome, they are right. So-called probiotics, a mixture of about half a dozen bacterial species found in yogurt, do act to calm this condition. But there is little evidence that consuming probiotics has the tonic effect on healthy people that certain adverts suggest.

A handful of doctors are taking a more fundamental approach to another microbiome-related disease, infection with Clostridium difficile. This bacterium, which causes life-threatening distension of the gut in some people who have been treated with antibiotics and thus had their microbiomes disrupted, is a bane of hospitals. It kills 14,000 people a year in America alone. 

But recent experiments have shown it can be eliminated by introducing, as an enema, the faeces of a healthy individual. “Stool transplants” are a pretty crude approach, to be sure, but the crucial point is that microbes are much easier to manipulate than human cells. For all the talk of superorganisms (and despite the yuck factor of what is being moved from one body to another), transplanting a microbiome is far easier than transplanting a heart or a kidney.

Disgusting but useful

Two other areas look promising. 

One is more sophisticated deployment of the humble antibiotic, arguably the pharma industry’s most effective invention. At the moment antibiotics are used mainly to kill infections. In the future they might have a more subtle use—to manipulate the mix of bugs within a human, so that good bugs spread at the expense of bad ones.

The other field that may be changed is genetics. Many of the diseases in which the microbiome is implicated seem to run in families. In some, such as heart disease, that is partly explained by known human genes. In a lot, though, most notably autism, the genetic link is obscure. 

This may be because geneticists have been looking at the wrong set of genes—the 23,000 rather than the 3m. For those 3m are still inherited. They are largely picked up from your mother during the messy process of birth. Though no clear example is yet known, it is possible that particular disease-inducing strains are being passed down the generations in this way.

As with all such upheavals, it is unclear where the microbiome revolution will end up. Doctors and biologists may truly come to think of people as superorganisms. Then again, they may not. What is clear, though, is that turning thinking inside out in this way is yielding new insights into seemingly intractable medical problems, and there is a good chance cures will follow. Vive la révolution!
To view the original article CLICK HERE
 .
 Please Be Sure To
My Blogs
To Spread The Facts World Wide To Give Others HOPE
I Have Been Fighting Cancer since 1997 & I’M STILL HERE!
I Have Cancer, Cancer Does NOT Have Me
I just want to say sorry for copping out at times and leaving Lee and friends to cope!
Any help and support YOU can give her will be hugely welcome.
I do make a lousy patient!

.
If YOU want to follow my fight against Cancer from when it started and I first presented with symptoms see The TAB just below the Header of this Blog. called >DIARY of Cancer< just click and it will give you a long list of the main events in chronological order.
.
Thoughts and comments will be in chronological order in the main blog and can be tracked in the >ARCHIVE< in the Right Sidebar. You may find the TABS >MEDICAL LINKS< and also >CANCER LINKS< of help.
.
YOU are welcome to call me if you believe I can help in ANY way.
 .

Posted by: Greg Lance-Watkins
tel: 01594 – 528 337
on: http://GregLanceWatkins.Blogspot.com
TWITTER: Greg_LW
Health/Cancer Blog: http://GregLW.blogspot.com 
Enhanced by Zemanta